LECTURE: 1-3: NEW FUNCTIONS FROM OLD FUNCTIONS

Example 1: Using transformations, sketch graphs of the following functions. Include a sketch of the parent function as well as the final graph of the given function.

Example 2: Horizontal and vertical stretching and shrinking. Sketch graphs of the following functions on $[-2\pi, 2\pi]$. How do they relate to the parent function $f(x) = \sin x$?

Example 3: Review: completing the square and then using transformations. Use completing the square to write the following functions such that they can be graphed using transformations.

Example 4: How to deal with absolute values. Sketch the graphs of the following functions:

2

Combinations of Functions

Example 5: If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{4 - x^2}$, find the following functions and their domains.

(a)
$$(f+g)(x)$$
 (b) $(fg)(x)$ (c) $(f/g)(x)$

Composition of Functions

Given two functions f and g, the **composite function** $f \circ g$ is defined by

$$(f \circ g)(x) = f(g(x)).$$

Note: this is a **NEW** operation and is **NOT** the same as multiplying f and g.

Example 6: Use the graph below to find the following values or explain why it is undefined.

(a) f(g(2))

		y,					
				g			f
\backslash			2_				
		/	2				
						/	
		0	\backslash	1	2/		x
				\setminus			

(b) $(g \circ g)(-2)$

Example 7: If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$. Is it true that $f \circ g = g \circ f$?

Example 8: If $f(x) = \cos x$ and $g(x) = 1 - \sqrt{x}$ find the following and their domains.

(a) $f \circ g$ (b) $g \circ f$

Example 9: Find $f \circ g \circ h$ if f(x) = 2/(x+1), $g(x) = \cos x$ and $h(x) = \sqrt{x+3}$.

Example 10: What were those functions? Given the following compositions find, *f*, *g* and *h* such that $F = f \circ g \circ h$.

(a) $F(x) = \cos^2(x+9)$ (b) $F(x) = \tan^4(x^2+1)$

Example 11: Suppose *g* is an even function and let $h = f \circ g$. Is *h* also an even function?

Example 12: Let *f* and *g* be linear functions with equations $f(x) = m_1x + b_1$ and $g(x) = m_2x + b_2$. Is $f \circ g$ also a linear function? If so, what is the slope of its graph? What is its *y*-intercept?